gdb

DR. YIHSIANG Liow (FEBRUARY 4, 2024)

Contents

1 Introduction

2 Prerequisites

3 Installation

4 Starting and quitting

5 Listing

6 Running a program

7 Breakpoints, next, step, continue
8 Viewing program state

9 Setting the value of a variable
10 Backtrace

11 Conditional breakpoints

12 Watchpoint

13 Recompiling

14 Emacs and gdb

15 Summary

16 Exercises

16.1 CISS240 students
16.2 CISS245 students

17 Core dumps

o o o

13
16
17
21
22
24
25
28

31
31
31

34

GDB

1 Introduction

A debugger or debugging tool is a computer program used to test and debug other programs
(the “target” program). The main use of a debugger is to run the target program under
controlled conditions that permit the programmer to track its execution and monitor changes
in computer resources that may indicate malfunctioning code. Typical debugging facilities
include the ability to run or halt the target program at specific points, display the contents
of memory, CPU registers or storage devices (such as disk drives), and modify memory or
register contents in order to enter selected test data that might be a cause of faulty program
execution. — Wikipedia

The GNU Debugger (GDB) is a portable debugger that runs on many Unix-like systems and
works for many programming languages, including Ada, Assembly, C, C++, D, Fortran, Go,
Objective-C, OpenCL C, Modula-2, Pascal, Rust, and partially others. — Wikipedia

A debugger such as gdb is a tool that might help you in locating a bug. It allows you to step
through your program one statement at a time and allows you to look at the values of your
variables as you trace your code. Of course you can achieve the same thing by temporarily in-
serting print statements into your code; but after you are done you have to remove/comment
those print statements. However gdb is more than just help with eliminating debug printing.

gdb is considered the de facto standard for Unix-based C/C++ debugger and is heavily used
by C/C++ professionals. Many C/C++ IDE actually uses gdb (example: kdevelop).

gdb is a very powerful debugger. But it’s a programming / software engineering tool. A
software engineering tool will save you some time. It might help you get data, organize data,
etc. But there’s one thing it won’t do. It won’t think for you. Software engineering tools
(including debuggers) don’t solve problems. A software engineer solves problems.

DR. YIHSIANG LIOW ylioweccis.edu 2 OoF 37 FEBRUARY 4, 2024

GDB

2 Prerequisites
In terms of prerequisites (your background and the platform pre-requisites), I assume

e You know C++ as in you know CISS240, CISS245, CISS350. If you have CISS240, you
can still benefit from studying this set of notes as long as you ignore exercises/comments
on pointers and classes.

e You know how to use our fedora virtual machines. Specifically, I'm using our Fedora
31 virtual machine. But I'm using gdb which works on all unix-based OSs.

e You know basic linux commands. (See my unix1 tutorial.)

e You know how to write text files using a text editor (in the virtual machine). I'll
be using emacs. You can use whatever you want. However in a later section, I'll be
showing you how to run gdb inside emacs. (See my emacs tutorial.)

e You know how to build executables. I'll be using g++ and make. (See my g++ and make
tutorial.) But you don’t really need to know g++ and make in detail.

DR. YIHSIANG LIOW ylioweccis.edu 3 OF 37 FEBRUARY 4, 2024

GDB

3 Installation

To make sure you have gdb, run gdb in your bash shell and then quit by doing Ctrl-D. If
gdb is not found, as root, you should install gdb by executing

dnf -y install gdb

In the next few sections on using gdb, gdb might give you a warning such as

Missing separate debuginfos, use: dnf debuginfo-install libasan-9.3.1-2 [... etc. ...]

That means gdb needs the libraries 1ibasan-9.3.1-2.£c31.x86_64, etc. In that case, as
root, execute the above command gdb gave you:

dnf debuginfo-install libasan-9.3.1-2 [... etc. ...]

DR. YIHSIANG LIOW ylioweccis.edu 4 oF 37 FEBRUARY 4, 2024

GDB

4 Starting and quitting

First write main. cpp:

#include <iostream>

int main()

{
std::cout << "hello world" << std::endl;
return O;

}

Now compile the above with the -g option:

[student@localhost test] g++ main.cpp -g -o main.exe

The executable binary file is main.exe. Now run gdb on main.exe:

[student@localhost test] gdb main.exe

You will see the gdb prompt where you can execute commands:

(gdb)

To quit gdb you type q at the gdb prompt.

If you ran gdb without loading the executable, you can load that inside gdb by doing:

(gdb) file main.exe

Try that now.

Exercise 4.1. Quit gdb and then run it with main.exe again. Is there any other way to
quit? O

If you have not studied my makefile pdf, you should do that now. Here’s a very simple
makefile

file: makefile
main.exe:
g++ —-g *.cpp -0 main.exe

Note that you should compile with the -g option when using gdb.

To compile main.exe with the makefile, execute make in the bash shell. If you have not
studied my make.pdf, you should do it now.

DR. YIHSIANG LIOW ylioweccis.edu 5 OF 37 FEBRUARY 4, 2024

GDB

5 Listing

You can view your source in gdb. Here’s one way of doing it. Type

(gdb) list

at the gdb prompt Try it now. You see that gdb will list your program. You can also do

(gdv) 1

(that’s the letter 1 and not the number 1!)

If you do list again, gdb will tell you that you are at the end of your source file. So list

list from the last line of your source file. By default gdb list 10 lines.

Another way is to specify a line number like this:

(gdb) 1 3

gdb will list the source around line 3 of your program. You can specify a range like this:

(gdb) 1 3, 5

That will list lines 3, 4, and 5.

Here are some other options:

13, -- lists starting at line 3
1,3 -- lists up to line 3

1+ -- lists after this point
1- -- lists before this point

Now modify your program:

#include <iostream>

void £()
{

std::cout << "f()" << std::endl;
}
void g(O
{

std::cout << "g()" << std::endl;
}
void h()
{

std::cout << "h()" << std::endl;
}

int main()

DR. YIHSIANG LIOW ylioweccis.edu 6 OF 37

FEBRUARY 4, 2024

GDB

{
std::cout << "hello world" << std::endl;
£0O;
gO;
h(O;
return 0;
}

Again compile your program with the -g option. Run gdb on the executable. And execute
1 several times. Notice that each time you run 1, you get about 10 lines.

This time try to list your source around the function f like this:

(gdb) 1 f

Exercise 5.1. Can gdb list source near a class? U

If you have more than one source file and one of them is named ABC. cpp then you can specify
the source file name in the list command like this:

(gdb) 1 ABC.cpp:3

This will list ABC. cpp starting around line 3. Or you can do this:

(gdb) 1 ABC.cpp:f

This will list ABC. cpp starting around function f.

DR. YIHSIANG LIOW ylioweccis.edu 7 OF 37 FEBRUARY 4, 2024

GDB

6 Running a program

Write this main. cpp:

#include <iostream>

void g(O

{
std::cout << "A" << '\n';
std::cout << "B" << '\n';

}

void £()

{
std::cout << "a" << '\n';
std::cout << "b" << '\n';
g();
std::cout << "c¢" << '\n';
std::cout << "d" << '\n';

}

int main()

{
std::cout << "1" << '\n';
std::cout << "2" << '\n';
£0O;
std::cout << "3" << '\n';
std::cout << "4" << '\n';
return 0;

}

Run gdb with the the executable of the above source file. To run your executable within gdb
type this at the gdb prompt:

(gdb) T ‘

No surprises here. (gdb will also show you some extra output including loading of libraries.)

If you need to run your program with some input file, say input.txt, you do this in gdb:

(gdb) r < input.txt

Exercise 6.1. Verify I'm not lying: Write a program main.exe that accepts an integer and
prints that integer. Write the input in a file named input.txt. Run main.exe in gdb using
input.txt as input. O

DR. YIHSIANG LIOW ylioweccis.edu 8 OF 37 FEBRUARY 4, 2024

© 0w 9 o W NN =

I I I R R N N T T e = T~
S R ® N P O © ® N O ;A W N R O

GDB

7 Breakpoints, next, step, continue

Now let’s set a breakpoint. (You'll see what it does in a minute.) Here’s our main.cpp

#include <iostream>

void g(O

{
std::cout << "A" << '\n';
std::cout << "B" << '\n';

}

void £(Q)

{
std::cout << "a" << '\n';
std::cout << "b" << '\n';
gO;
std::cout << "c" << '\n';
std::cout << "d" << '\n';

}

int main()

{
std::cout << "1" << '\n';
std::cout << "2" << '\n';
£0O;
std::cout << "3" << '\n';
std::cout << "4" << '\n';
return 0;

}

I'm going to put a breakpoint at line 20:

(gdb) b 20

Now run the program with the r command. The output looks like this:

Starting program: /home/student/shares/yliow/Documents/work/projects/gdb/test/main.exe

Breakpoint 1, main () at main.cpp:20
20 std::cout << "1" << '\n';

Aha! The point of a breakpoint is to stop the execution of the program. Why? Because you
suspect there’s a bug coming up and you want stop here and analyze the program carefully.

Also, note that your breakpoint is breakpoint 1. Each breakpoint is given an id.

You can continue the execution of your program in several ways: using continue, step, and
next. First try to continue the execution:

(gdb) ¢

No surprises there. So continue will run the program to the end. If during the run the

DR. YIHSIANG LIOW ylioweccis.edu 9 orF 37 FEBRUARY 4, 2024

GDB

program hits another breakpoint, it will temporarily pause execution again.

Next, run (with r) your program a second time. Again you hit the breakpoint at line 20.
Now, to continue the execution of your program, use step:

(gdb) s
You'll get this:
std::operator<< <std::char_traits<char> > (__out=..., __ s=0x402014 "1")
at /usr/src/debug/gcc-9.3.1-2.£c31.x86_64/0bj-x86_64-redhat-1linux/x86_64-redhat-linux/libstdc++-v3/include
565 operator<<(basic_ostream<char, _Traits>& __out, const charx __s)

Do a few more steps with s.

What’s happening? With step, gdb will execute the next instruction of your program. In
the above example, the next few steps involved C++ code from printing (i.e., operator<<).

Finally let’s try the next command. Run your program again (with r) and when you hit the
breakpoint, do

(gdb) n

Do this a couple of times.

(gdb) n

1

21 std::cout << "2" << '\n';
(gdb) n

2

22 £0O;

(gdb) n

a

o 0 W= o

23 std::cout << "3" << '\n';

You notice that the program execution pauses at every statement of main(). However it exe-
cutes through function £ () without pausing. n also did not pause at code from operator<<.

So

e continue (i.e., ¢) will run your program to the end, unless of course it’s stopped by a
breakpoint.

e step (i.e., s) will run one statement at a time and pause.

e next (i.e., n) will execute the program, pausing only at statements of the function
where you last hit a breakpoint.

Get it?

/ostream:565

DR. YIHSIANG LIOW ylioweccis.edu 10 oF 37 FEBRUARY 4, 2024

GDB

Instead of doing one step/next, you can do

(gdb) s 3

which will execute 3 steps. You can also do n 3 to do next three times.

You can also set a breakpoint with a function name. Try this:

(gdb) b f

This will put a breakpoint at the first statement of the function £(). Run your program
again and try it out. You can list all breakpoints by doing

info b

Exercise 7.1. Can you create a breakpoint at an inline function? 0

Exercise 7.2. Write a program containing a class with a method. Verify that you can insert
a breakpoint at the method. 0

Now for disabling a breakpoint. You can do that using:

(gdb) disable 1

The “1” here refers to breakpoint 1 and not some line number. So

(gdb) info b

and look at the status of your breakpoints. Run your program again. You can enable a
breakpoint after disabling it.

(gdb) enable 1

and do info b again. Do you see it’s now active again? Run your program again. As you
can see, disabling a breakpoint does not remove it. It’s just not active.

If you want to remove a breakpoint you can do

(gdb) delete 1

Do info b to check.

If you are working with multiple files, you can include the name of the cpp file when you set
breakpoints. For instance

(gdb) b ABC.cpp:10

sets a breakpoint at line 10 of ABC. cpp.

During the pause of a run, you can stop the run by performing a kill:

DR. YIHSIANG LIOW ylioweccis.edu 11 oF 37 FEBRUARY 4, 2024

GDB

(gdb) k

Exercise 7.3. Verify that I'm not lying: Write a main.cpp with main() calling £() in
a.cpp. £(O) print 1, 2, 3, 4, 5 with 5 separate statements. Run gdb on main.exe. In gdb,
create a breakpoint at the statement in £() that prints 3. Run your program up to the
breakpoint and finish the execution with n. O

Exercise 7.4. In gdb, run a program up to a breakpoint and then do a kill. 0

Exercise 7.5. Try this: You can save your breakpoints by executing “save breakpoints
brk.txt”. When you restart your gdb, you recover your saved breakpoints by doing “source
brk.txt”.

DR. YIHSIANG LIOW ylioweccis.edu 12 oF 37 FEBRUARY 4, 2024

GDB

8 Viewing program state

Why do we want to set breakpoints? Because we want to view the state of the program which
is just a fancy way of saying we want to see the values of the variables in our program at the
point when the program stops. This is useful in a debugging process: You set breakpoints
just before the point where you suspect something is wrong, run the program up to that
point, and view the values of the variables to see if values matches your expectation.

Modify your main.cpp as follows:

#include <iostream>

int main()

{
int x = 0;
x =1;
X = 2;
x = 3;
return O;
}

Recompile your program and run gdb on the executable. Set a breakpoint at main():

(gdb) b main

Next execute the program. When you hit the breakpoint, print the value of variable x:

P X

You will see that

(gdb) print x
$1 =0
(gdb)

i.e., currently the value of x is 0. Do next and then print the value of x again:

(gdb) n
1
7 x =1;

Try next and print x a couple more times.
Note that you can only execute p x when x is in scope.

You can also print the value inside an array. For instance if a is an array (or a pointer), you
can do

p al1l]

You can also print the whole array by doing

P a

To print the first 5 values of array a, you execute

DR. YIHSIANG LIOW ylioweccis.edu 13 oF 37 FEBRUARY 4, 2024

GDB

p *a@5

You can also print the values of an object.

Exercise 8.1. Verify that you can print all the values of an array and the values of the
array up to a certain index value. 0

There are times when you know that something is wrong with the value of a single variable,
say x, and you want to know the behavior of this variable. You can of course execute “p x”
again and again. But there’s an easier way to do this. You can get gdb to display the value
of x at every breakpoint. You do that with this command:

(gdb) disp x

When you do n, the value of x is automatically printed. When you do disp x, you'll notice
that when gdb prints x, it also prints a number next to x. That’s the display id:

(gdb) disp x
1: x =0

You can also see all displays using info:

(gdb) info disp

Auto-display expressions now in effect:
Num Enb Expression

1: y X

With that you can temporarily disable the display of x. For instance if the display id of x is
1, to disable you do

(gdb) disable disp 1

To enable the display of x again, you do

(gdb) enable disp 1

You can list all the displays by doing

(gdb) info disp

You can remove a display using undisp with the id:

(gdb) undisp 1

Exercise 8.2. Using this program

DR. YIHSIANG LIOW ylioweccis.edu 14 or 37 FEBRUARY 4, 2024

GDB

int main()

{
int x = 0; // set breakpoint here
int y = 0;
x =1;
y=1
X = 2;
y = 2;
X = 3;
y =3
X = 4;
y =4
x = 5;
y = 5;
X = 6;
y = 6;
return 0;
}

Run this in gdb, set a breakpoint at line 3, run the program. At the breakpoint, print x and
y (note: y is not declared yet). Then set up a display of x. Can you set up display of y? Do
n two times. Set up display of y. Show all displays. Do n two times. Stop the display of x.
Do n two times. Re-enable the display of x, and do n until the program ends. U

By the way, you can also print all the local variables by doing

(gdb) info locals

Exercise 8.3. Check if you can do the following:

(a) Can you print the address of a variable?
(b) If p is a pointer, can you print the value of p and the value that p points to?

Exercise 8.4. Check if you can do the following:

(a) Can you print an object?
(b) Can you print the value of a member variable of an object? What about private
member variables?

O

DR. YIHSIANG LIOW ylioweccis.edu 15 oF 37 FEBRUARY 4, 2024

GDB

9 Setting the value of a variable

You can set the value of a variable too. Here’s our program again:

#include <iostream>

int main()

{
int x = 1;
std::cout << "1" << std::endl;
std::cout << x << '\n';
return O;
}

Set a breakpoint at line 6. Run the program. At the breakpoint set the value of x to 999:

(gdb) set variable x = 999

and issue the next command:
(gdb) n
You'll see that the next statement of the program prints 999.

Exercise 9.1. Create an example with an array. In gdb change the value of of the element

of the array. O

DR. YIHSIANG LIOW ylioweccis.edu 16 oF 37 FEBRUARY 4, 2024

GDB

10 Backtrace

A program execution usually weaves through lots of function calls. The backtrace command

tells you where the program execution has gone through.

Modify our program as follows:

void foo2(int x)

{
std::cout <<
std::cout <<

}

void foo(int x)

{

std::cout <<

--x;
foo2(x);

}

int bar()

{
std::cout <<
return 42;

}

double baz()

{
std::cout <<
return 3.14;

}

int main()

{
std::cout <<
int x = 1;
foo(x);
X =X + 2;
x = bar();
x = baz();
return 0;

}

#tinclude <iostream>

"foo2" << std::endl;
1 / x << std::endl;

"foo" << std::endl;

"bar" << std::endl;

"baz" << std::endl;

"hello world" << std

::endl;

First compile and run your program in your bash shell. You will get a program error. You do
get an error message which might help. Next, let’s get gdb to run it and see what happens.
You get this error message.

DR. YIHSIANG LIOW ylioweccis.edu

17 oF 37

FEBRUARY 4, 2024

GDB

Program received signal SIGFPE, Arithmetic exception.
0x00000000004007f4 in foo2 (x=0) at main.cpp:6
6 std::cout << 1 / x << std::endl;

Much better right? Notice that the error you get is an arithmetic exception and the signal
SIGFPE is a signal sent by the CPU to the current running process to indicate this error.

Also, execute the following gdb command:

(gdb) bt

and you will see the function call stack, i.e., the functions starting at main() up to the
function where the error occurs:
#0 0x00000000004007f4 in foo2 (x=0) at main.cpp:6

#1 0x0000000000400848 in foo (x=0) at main.cpp:13
#2 0x00000000004008d1 in main () at main.cpp:32

Each function uses a certain amount of memory — this is called a function frame (or function
record). The function frames are organized as a stack (see CISS360).

The error message in gdb and the call stack will help you debug your program.

At this point, in gdb, you can go through the stack of function frames by move up and
down through the function frames and see what causes the program crash. The program has
crashed at foo2. You can print all the relevant variables in scope at this point and analyze
what’s happening.

(gdb) print x
$1 =0

So the value of x at this point is 0.

If you were expecting x in foo2 to be something else, you can move to the function frame
before this function call and see why 0 was passed into the function. If you try to go down,
you get this:

(gdb) down
Bottom (innermost) frame selected; you cannot go down.

Aha ... down is moving forward in the function call chain. So if you want the function frame
of the function before f002, you have to go up:

(gdb) up
#1 0x0000000000401207 in foo (x=0) at main.cpp:13
13 foo2(x);

So you are now at line 13 of function foo where you called foo2(x). You can print the value
of x that is currently in scope:

(gdb) print x
$1 =0

DR. YIHSIANG LIOW ylioweccis.edu 18 oF 37 FEBRUARY 4, 2024

GDB

(Of course in this case the value of x in foo is the same as the value of x in f002.)
Get it? This is a pretty useful feature for debugging.

In case the stack is huge, you can do

(gdb) bt 2

to see the 2 function frames closest to the current point of execution, i.e., the previous 2.
Doing

(gdb) bt -2

would be the opposite — those 2 frames further from the current point of execution, i.e.; the
first 2.

Exercise 10.1. As an execise, run gdb on the following program, moving up and down
through the function frames and printing the variables which are in scope.

DR. YIHSIANG LIOW ylioweccis.edu 19 or 37 FEBRUARY 4, 2024

GDB

void foo2(int x)
{
std::cout <<
int a[10];
std::cout <<

}

void foo(int x)

{

std::cout <<

x *= 1000;
foo2(x);

}

int bar()

{
std::cout <<
return 42;

}

double baz()

{
std::cout <<
return 3.14;

}

int main()

{
std::cout <<
int x = 1000;
foo(x * 5);
X =X + 2;
x = bar();
x = baz();
return 0;

}

#include <iostream>

"foo2" << std:

alx] << '"\n';

"foo" << std::

"bar" << std::

"baz" << std::

"hello world"

:endl;

endl;

endl;

endl;

<< std

::endl;

What is the signal in this case? Of course if you are a good programmer, you can see the error
almost immediately. But pretend you don’t see it. Practise moving forward and backward

through the function frames and print the variables in scope.

DR. YIHSIANG LIOW ylioweccis.edu

20 oF 37

FEBRUARY 4, 2024

GDB

11 Conditional breakpoints

You can set a breakpoint based on a condition. Here’s the program to try out:

#include <iostream>
int main()
{
for (int i = 0; i < 100; i++)
{
std::cout << i << std::endl;
}
std::cout << "end" << std::endl;
return O;
¥

Compile it with the -g option and run gdb with the executable. At the gdb prompt, set a
conditional breakpoint at line 7 when i is 95:

(gdb) b 7 if i == 95

Now run the program.

The above illustrate how to get to a point in the execution of the program quickly when that
point is dependent on a variable and not the line number of the source.

Exercise 11.1. Can you use < instead of ==7 What else should you try? 0

DR. YIHSIANG LIOW ylioweccis.edu 21 or 37 FEBRUARY 4, 2024

GDB

12 Watchpoint

Run gdb with this program:

#include <iostream>
int main()
{
int x = 0; // breakpoint
int y = 0;
x =1;
y=1
X = 2;
y =2
x = 3;
y=3;
X = 4;
y =4
return O;
}

Set a breakpoint at line 5 and execute r. When you reach the breakpoint, set a watch point
on x:

watch x

Continue with ¢ and you’ll see this:

(gdb) ¢
Continuing.

Hardware watchpoint 2: x

01d value 0

New value 1

main () at main.cpp:8
8 y=1;

You see that the program execution stop when x changes its value. (The line of code shown
is line 8, but line 8 has not executed yet.) If you continue again you get

(gdb) ¢
Continuing.

Hardware watchpoint 2: x

01d value 1

New value = 2

main () at main.cpp:10
10 y = 2;

Again you see that execution continues until the value of x changes.

DR. YIHSIANG LIOW ylioweccis.edu 22 oF 37 FEBRUARY 4, 2024

GDB

This is obviously very helpful if you are watching a particular variable. If the value of x
computed is incorrect, you can set a watch on x and see how x changes. You don’t have to
p x for every n.

Instead of watching how x changes (i.e., there’s a write operation on x), you can also have
a rwatch, i.e., a read watch, to see when the value of x was read. Run gdb with this

#tinclude <iostream>

int main()

{
int x = 0; // breakpoint
int y = 0;
x =1;
y =1
X = 2;
y = x; // value of x is read
return O;
}

Set a breakpoint at line 5. Execute r. At the breakpoint, create a read watch on x:

(gdb) rwatch x

Continue with c to get:

(gdb) ¢
Continuing.

Hardware read watchpoint 2: x

Value = 2
0x0000000000401170 in main () at main.cpp:10
10 y = x; // value of x is read

i.e., the program execution pauses when you reach line 10 where x is read.

For a read/write watch, you do

(gdb) awatch x

Like previous commands, you can execute info watch and see all watchpoints. Also, you
do info b, you'll also see all breakpoints and all watchpoints.

(gdb) info b

Num Type Disp Enb Address What

3 breakpoint keep y = 0x000000000040114a in main() at main.cpp:5
breakpoint already hit 1 time

4 hw watchpoint keep y X

You can disable, enable, delete a watchpoint using its id.

DR. YIHSIANG LIOW ylioweccis.edu 23 oF 37 FEBRUARY 4, 2024

GDB

13 Recompiling

Of course you should know by now that during and after you analyzed your bug(s), you will
need to change your source code, recompile, and retest. You can still recompile in your bash
shell. When you re-run you program inside gdb, gdb will detect that your executable has
changed and will reload it. But you can actually execute make in gdb.

Exercise 13.1. Verify I'm not lying: Write a simple C++ file. Compile it. Load it in gdb.
Modify your C++ file and recompile it. Go back to gdb and do a r. Check that gdb reloads
the executable. U

Exercise 13.2. Next, recompile (after modifying your C++ file) inside gdb. U

DR. YIHSIANG LIOW ylioweccis.edu 24 or 37 FEBRUARY 4, 2024

GDB

14 Emacs and gdb

You can run gdb in emacs. Write a main.cpp (any would do). I assume you have the
following very simple makefile:

main.exe: main.cpp
g++ —g main.cpp -o main.exe

In the following remember that C-x means Ctrl-c and M-x means Alt-x.
Do the following:

e Run emacs in your bash shell with emacs main.cpp & Maximize your emacs.

e In emacs, vertically split your frame (C-x 3).

e In emacs, in the left frame, do M-x gdb. emacs will ask if you want to run gdb on
main.cpp. Change main.cpp to main.exe. You now have gdb running in your left
frame and emacs editing main.cpp on your right frame.

e [t’s helpful to turn on line numbers in your right frame. Go to the main.cpp frame
and do M-x display-line-numbers-mode.

e Go to the gdb frame. Set a breakpoint with b main, run with r, and do next n a couple
of times. Emacs will show you your breakpoints in your main.cpp and also where gdb
paused the execution.

HEE

Type "show copying" and "show warranty" for details. #include

This GDB was configured as "x86 64-redhat-linux-gnu"

Type "show configuration" for configuration details. int main()

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/=>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from main.exe...

(gdb) b main

Breakpoint 1 at O0x40114a: file main.cpp, line 5.

(gdb) r

a3
Starting program: /home/student/shares/yliow/Documents/work/project return @;
s/gdb/tmp/main.exe

Breakpoint 1, main () at main.cpp:5
warning: Source file is more recent than executable.
int x = 0;

int y = 0;

gud-main.exe* Bot (32,6 Debugger:run [end-stepping - (REEESSEE T P ALl (8,0) Git:master (C++//1 Abbrev)

Nice right? By the way, click on the Gud button at the top and take a look at the pull down
menu. (Gud = grand unified debugger.)

When you change your main.cpp, you want to recompile your main.exe. You can do make
in gdb or in emacs. I'll do it in emacs. Do this:

DR. YIHSIANG LIOW ylioweccis.edu 25 OoF 37 FEBRUARY 4, 2024

GDB

e In emacs, do M-x compile. emacs will ask if you want to run make. Press the enter
key.

e emacs will most likely show you the results of g++, which will change one of your
frames, i.e., either your gdb frame or your main.cpp frame will be hidden. You can
always do C-x-b to switch buffer to get back to the previous setup.

Exercise 14.1. Try this: Run emacs. In emacs do M-x gdb and load your main.exe. Do
a vertical split of the frame. Then do r in gdb and you’ll see your source file is auto-loaded
into one of the frames. U

You can also get emacs to give you a layout of common frames for gdb debugging. In emacs,
do M-x gdb-many-windows and you’ll get

Registers

(Debugger:run [end-stepping - [EEEEEEATTECN AN P DTN AR SN I 3 (Locals: main [thread

n.cpp Top (9,10) Git:master (C++//1 -1 Abbrev) |U:--- *input/output of main.exe* AL (1,0) (Inferior I/0:ry|
n of main.cpp:8 [Threads
y Disp Enb Addr Hits What
breakpoint keep 0114a 1 in main() of m.sm.cpp:ED

| U:%*- *stack frames of main.exe* All (1,0) (Frames [thread] U:%*- *breakpoints of main.exe* All (2,71) (Breakpoints -1)
End of buffer

You can customize your emacs so that you always have the gdb-many-windows layout when-
ever you run gdb in emacs. To do that, in emacs execute M-x customize and you'll get

DR. YIHSIANG LIOW ylioweccis.edu 26 OF 37 FEBRUARY 4, 2024

GDB

@

emacs@lo

File Edit Options Buffers Tools

j| For help using this

buffer, see Easy Customizati in the Emacs me

Operate on all settings in this buffer:

Apply M Apply and Save

Emacs group: Customization of the One True Editor.

| State [

See also Manual.

Basic text editing facilities.

Convenience features for faster editing.
Support for ed g files.

Support for ed ng text files.

Support for g text files.

Support for ed g bi y data files.
Interfacing to external utilities.
Communications, networking, and remote access to files.
Support for programming in other languages.
Applications written in Emacs.

Support for further development of Emacs.
Fitting Emacs with its environment.
Ssupport for multiple fonts.

Support for Emacs help systems.

U:**- *Customize Group: Emacs* Top (3,0 (Custom)

In the search box type gdb. Then

look for “Gdb Many Windows”, click on it, and toggle it

to turn on this option. You can also turn on “Gdb Show Main”. This will show the C++
source file with the main() function in the source file frame. Then scroll to the top and do

apply and save. This will change

your emacs customization. Next time you run emacs and

go M-x gdb, you'll get the gdb-many-windows layout.

(If you want to save your current
emacs configuration file is /home/

emacs configuration before you mess around with it, your
student/.emacs.d/init.el.)

DR. YIHSIANG LIOW ylioweccis.edu

27 oF 37 FEBRUARY 4, 2024

GDB

15 Summary

You can read more about the other commands using the gdb help command:

(gdb) h

There’s a lot more to gdb. You can find more info on gdb on the web.

Here’s a summary of the commands used in this tutorial.

DR. YIHSIANG LIOW ylioweccis.edu 28 OF 37 FEBRUARY 4, 2024

GDB

file main.exe load main.exe

q quit

r run from beginning to the end or to the first breakpoint
C continue: run to the next breakpoint

n next: run to beginning of next statement in current function
s step: run to the beginning of next statement

k kill

b 42 set breakpoint at line 42

b a.cpp:42 set breakpoint at line 42 of a.cpp

b f set breakpoint at function f

disable b 1 disable breakpoint 1 (breakpoint is not removed)

enable b 1 enable breakpoint 1

info b info on all breakpoints and watchpoints

delete 1 delete breakpoint 1

clear 23 delete breakpoint at line 23

P x print value of variable x or all values of x if x is an array
p x[2] print value at index 2 of array x

info locals print all local variables

disp x set automatic display of x

disable disp 1 disable disp 1

enable disp 1 enable disp 1

info disp info on all displays

undispl 1 delete disp 1

watch x set a (write) watchpoint on x

rwatch x set a read watchpoint on x

awatch x set a read and write watchpoint on x

info write info on all watchpoints

disable 1 disable watchpoint 1

enable 1 enable watchpoint 1

delete 1 delete watchpoint 1

set variable x=1 set value of x to 1

bt print backtrace

bt 2 previous 2 function frames in backtrace
bt -2 first 2 function frames in backtrace

up previous function frame (forward)

down next function frame (backward)

save b brk.txt save breakpoints to brk.txt

source brk.txt restore breakpoints from brk.txt

h help

DR. YIHSIANG LIOW ylioweccis.edu 29 or 37 FEBRUARY 4, 2024

GDB

Exercise 15.1. Try this: There’s a GUI for gdb called ddd. Install it and try it out when
you have a couple of minutes. 0

Exercise 15.2. Try this: There’s a text-based interface alternative for gdb. In your bash
shell run gdb -tui main.exe. You can try it out for a couple of minutes. 0

DR. YIHSIANG LIOW ylioweccis.edu 30 oF 37 FEBRUARY 4, 2024

GDB

16 Exercises

16.1 CISS240 students

This is for students after learning binarysearch and functions.

One test case is given in

main(). Using gdb to trace the code, figure out why the test case causes a problem.

#include <iostream>

int binarysearch(int x[], int n, int target)

{
int left = 0;
int right = n - 1;
while (left < right)
{
int mid = left + (right - left) / 2;
if (x[mid] >= target)
{
right = mid;
}
else if (x[mid] <= target)
{
left = mid;
}
else if (x[mid] == target)
{
return mid;
}
}
return -1;
}
int main()
{
int x[1000];
for (int i = 0; i < 1000; ++i)
{
x[i] = 2 * 1i;
}
std::cout << binarysearch(x, 1000, 1) << '\n';
return O;
}

16.2 CISS245 students

This is for students after learning the vector class. One test case is given in main(). Using
gdb to trace the code, figure out why the test case causes a problem.

DR. YIHSIANG LIOW ylioweccis.edu

31 oF 37

FEBRUARY 4, 2024

GDB

Is the following correct? If it’s not, fix it. Use gdb only if necessary.

#include <iostream>
#include <ctime>
#include <cstdlib>
#include <vector>

void randvector(std::vector< int > & v)

{

for (auto && e: v) e = rand();

}

void swap(int & a, int & b)

= a;

)
1]
ct T ot

void bubblesort(std::vector< int > & v)

{
size_t n = v.size();
for (size_t i =n - 1; i >= 0; --1i)
{
for (size_t j = 0; j <= i; ++j)
{
if (v[j]l > v[j + 1)
{
swap(v[jl, v[j + 11);
}
}
}
}

size_t binarysearch(const std::vector< int & v, int target)
{

size_t left = 0;

size_t right = v.size();

while (left < right)

{
size_t mid = left + (left + right) / 2;
if (x[mid] == target)
{
return mid;
}
else if (x[mid] < target)
{

DR. YIHSIANG LIOW ylioweccis.edu 32 OoF 37 FEBRUARY 4, 2024

GDB

right = mid;
}
else
{

left = mid;
}

int main()

{
srand ((unsigned int) time(NULL));
std::vector< int > v(10000);
randvector (v) ;
bubblesort (v);
int target;
std::cin >> target;
std::cout << binarysearch(v, target) << '\n';
return O;
}

DR. YIHSIANG LIOW ylioweccis.edu

33 oF 37

FEBRUARY 4, 2024

GDB

17 Core dumps

A core dump consists of the recorded state of the working memory of a computer program at
a specific time, generally when the program has crashed or otherwise terminated abnormally.

Run the following program in your bash shell:

#include <iostream>

int main()

{
int x = 0;
int y = 0;
x =1;
y=1
X = 2;
y = 2;
X 3;
y =3
X = 4;
y =4
x=1/0;
return 0;
}

(Clearly there’s a division-by-zero error, but pretend you didn’t see that.) You'll get a core

dump:

[student@localhost tmp]$./main.exe
Floating point exception (core dumped)

For Fedora 31, the core dump is stored somewhere else, not in your current directory. To
get a copy of the core dump, do this:

[student@localhost tmp]$ coredumpctl -o core dump

and you’ll get this

Pass -q to turn off this notice.
PID: 14151 (main.exe)
UID: 1000 (student)
GID: 1000 (student)
Signal: 8 (FPE)

Command Line: ./main.exe

Unit: session-2.scope
Slice: user-1000.slice
Session: 2
Owner UID: 1000 (student)

Boot ID: 7ac02c5b3b264d669b2c5299e1b823fa

Hint: You are currently not seeing messages from other users and the system.

Users in groups 'adm', 'systemd-journal', 'wheel' can see all messages.

Timestamp: Thu 2023-08-10 10:54:23 EDT (38s ago)

Executable: /home/student/shares/yliow/Documents/work/projects/gdb/tmp/main.exe
Control Group: /user.slice/user-1000.slice/session-2.scope

DR. YIHSIANG LIOW ylioweccis.edu

34 or 37

FEBRUARY 4, 2024

GDB

Machine ID: 8180067302a34256ab3a8de9a3f087da
Hostname: localhost.localdomain
cStorage: /var/lib/systemd/coredump/core.main\x2eexe.1000.7ac02c5b3b264d669b2c5299e1b823fa.14151.169167
9263000000.1z4
Message: Process 14151 (main.exe) of user 1000 dumped core.

Stack trace of thread 14151:

#0 0x000000000040119b n/a (/home/student/shares/yliow/Documents/work/projects/gdb/tmp/main.e
xe)

#1 0x00007fb187fdala3 __libc_start_main (libc.so.6)

#2 0x000000000040108e n/a (/home/student/shares/yliow/Documents/work/projects/gdb/tmp/main.e
xe)
More than one entry matches, ignoring rest.

You’ll also have a core file:

[student@localhost tmp]$ 1ls core
core

Now run gdb like this:

[student@localhost tmpl$ gdb main.exe core

and you'll see

[student@localhost tmpl$ gdb main.exe core

GNU gdb (GDB) Fedora 8.3.50.20190824-30.fc31
snipped
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...
Reading symbols from main.exe...

[New LWP 12548]

Core was generated by ~./main.exe'.

Program terminated with signal SIGFPE, Arithmetic exception.

#0 0x000000000040119b in main () at main.cpp:15

15 x = 1/0;

In this case, the signal SIGFPE is a fatal arithmetic error. You can find information on
linux signals if you google, including SIGFPE. In more complex cases, you want to print the
values of the variables at this point. Your program is not running, but gdb can read the
state of your program when it crashes through the information in the core dump. All you
need to do now is to do the same as back in the section on backtrace: trace the program by
analyzing the values of the variables in the function frames in the function call stack that
lead up to the program crash.

The only difference between the scenario here and the example in the section on backtrace
is that when analyzing your program using the core dump, your program is not running.
We are analyzing a snapshot of a program execution (up to the crash) that was stored on
harddrive.

Analyzing the core dump is useful. For instance if your program uses random numbers and

DR. YIHSIANG LIOW ylioweccis.edu 35 OF 37 FEBRUARY 4, 2024

GDB

these random numbers are not stored by your program, then it would be very difficult to
recreate the same scenario for debugging. Even if you have all the inputs stored somewhere,
it might be very time consuming to recreate the same scenario by running the program in
gdb.

Exercise 17.1. Generate a core dump from the following. Use gdb to analyze what hap-
pened. Fix the program. Of course if you are a strong programmers, you can figure out the
bug very quickly and without gdb. Just pretend you don’t see it. Walk through the function
frames and print the values in scope before fixing the bug.

#include <iostream>
#include <string>

class SLNode

{
public:
SLNode (int key, SLNode * next)
: key_(key), next_(next)
{3
int key_;
SLNode * next_;
};

std::ostream & operator<<(std::ostream & cout, const SLNode & node)

cout << node.key_;
return cout;

}
class SLList
{
public:
SLList ()
: phead_(NULL), size_(0)
{}
// WARNING: No destructor, copy constructor, operator=
void insert_head(int key)
{
phead_ = new SLNode(key, phead_);
++size_;
}
SLNode * phead_;
size_t size_;
3

std::ostream & operator<<(std::ostream & cout, const SLList & list)

{

cout << '{';

DR. YIHSIANG LIOW ylioweccis.edu 36 OF 37 FEBRUARY 4, 2024

GDB

std::string delim = "";
SLNode * p = list.phead_;
for (size_t i = 0; i <= list.size_; ++i)
{
cout << delim << (*p);
delim =", ";
P = p—>next_;
}

cout << '}';
return cout;

}
int main()
{
SLList list;
std::cout << list << '\n';
for (int i = 42; i < 50; ++i)
{
list.insert_head(i);
std::cout << list << '\n';
}
return 0;
}

DR. YIHSIANG LIOW ylioweccis.edu 37 oF 37

FEBRUARY 4, 2024

	Introduction
	Prerequisites
	Installation
	Starting and quitting
	Listing
	Running a program
	Breakpoints, next, step, continue
	Viewing program state
	Setting the value of a variable
	Backtrace
	Conditional breakpoints
	Watchpoint
	Recompiling
	Emacs and gdb
	Summary
	Exercises
	CISS240 students
	CISS245 students

	Core dumps

