gcc/g++ Tutorial

DR. YIHSIANG LIOow (SEPTEMBER 17, 2022)

Contents

9

Introduction
Prerequisites

Compiling a Single C/C++ Source File into an Executable
3.1 Notefor Cprogrammers e
3.2 Noteto Cygwinusers i ittt e e

The Warn all Option

Overview of Compilation Process
Preprocessing Option

The Debugger Option

Object Files and Linking

Compiling multiple files

10 Why Build and Save Object Files?

11 Include Directory

12 Libraries

13 Optimization

14 Summary

15 What now?

11
12
14
15
17
21
23
25
26
27
28

GCC/G++ TUTORIAL

1 Introduction

The GNU Compiler Collection (GCC) is a compiler system produced by the GNU Project
supporting various programming languages. GCC is a key component of the GNU toolchain.
The Free Software Foundation (FSF) distributes GCC under the GNU General Public Li-
cense (GNU GPL). GCC has played an important role in the growth of free software, as
both a tool and an example.

Originally named the GNU C Compiler, because it only handled the C programming lan-
guage, GCC 1.0 was released in 1987 and the compiler was extended to compile C++ in
December of that year. Front ends were later developed for Objective-C, Objective-C++,
Fortran, Java, Ada, and Go among others.

As well as being the official compiler of the unfinished GNU operating system, GCC has
been adopted as the standard compiler by most other modern Unix-like computer oper-
ating systems, including Linux and the BSD family. A port to RISC OS has also been
developed extensively in recent years. There is also an old (3.0) port of GCC to Plan9,
running under its ANSI/POSIX Environment (APE). GCC is also available for Microsoft
Windows operating systems and for the ARM processor used by many portable devices.

GCC has been ported to a wide variety of processor architectures, and is widely de-
ployed as a tool in proprietary development environments. GCC is also available for
most embedded platforms, including Symbian (called gcce), AMCC, and Freescale Power
Architecture-based chips. The compiler can target a wide variety of platforms, including
videogame consoles such as the PlayStation 2 and Dreamcast. Several companies make
a business out of supplying and supporting GCC ports to various platforms, and chip man-
ufacturers today consider a GCC port almost essential to the success of an architecture.

The standard compiler releases since 4.6 include front ends for C (gcc), C++ (g++),
Objective—C, Objective—C++, Fortran (gfortran), Java (gcj), Ada (GNAT), and Go (gccgo).
Also available, but not in standard are Pascal (gpc), Mercury, Modula-2, Modula-3, PL/I,
D (gdc), and VHDL (ghdl). A popular parallel language extension, OpenMP, is also sup-
ported.

The Fortran front end was g77 before version 4.0, which only supports FORTRAN 77.
In newer versions, g77 is dropped in favor of the new gfortran front end that supports
Fortran 95 and parts of Fortran 2003 as well.[36] As the later Fortran standards incorpo-
rate the F77 standard, standards-compliant F77 code is also standards-compliant F90/95
code, and so can be compiled without trouble in gfortran. A front-end for CHILL was
dropped due to a lack of maintenance.[37]

DR. YIHSIANG LIOW yiioweccis.edu 2 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

A few experimental branches exist to support additional languages, such as the GCC
UPC compiler for Unified Parallel C.

— Wikipedia

DR. YIHSIANG LIOW yiioweccis.edu 3 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

2 Prerequisites

| assume the following:

e You have a copy of my Fedora virtual machine and have gone over my tutorial on
using VMware Player/Workstation and the Fedora virtual machine.

e You have already read Unix Tutorial 1.

The C/C++ compiler used is g++. If you’re using my virtual machine the software is already
installed. Otherwise you can install it by doing this:

dnf -y install gcc-g++

as root.

DR. YIHSIANG LIOW yiioweccis.edu 4 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

3 Compiling a Single C/C++4 Source File into an
Executable

Go ahead and create a directory for all examples in this set of notes. I'm using a directory
called test.

Create a simple helloworld.cpp in your test directory:

#include <iostream>

int main()

{
std::cout << "hello world" << std::endl;

return O;

To compile your C++ source program into an executable, you can do this:

[student@localhost test] g++ helloworld.cpp

This will build an executable called a.out:

[student@localhost test] 1ls -la

total 39

drwxrwxrwx. 1 root root O Sep 17 17:08 .

drwxrwxrwx. 1 root root 16384 Sep 17 17:08 ..

-TWXrwxrwx. 1 root root 22640 Sep 17 17:08 a.out
-IrwXrwxrwx. 1 root root 94 Sep 17 17:08 helloworld.cpp

To run the executable you do this:

[student@localhost test] ./a.out
hello world

The . means “the current working directory”. So you’re trying to run the a.out in this
directory. In general to run an executable that is in your current working directory you type
this at the prompt:

./ [executable filenamel]

Of course to run a program hackgoogle in directory /home/jripper/secret/, you do
this:

DR. YIHSIANG LIOW yiioweccis.edu 5 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

[student@localhost test] /home/jripper/secret/hackgoogle

Suppose you want to call your executable helloworld instead of a.out. You do this:

[student@localhost test] g++ helloworld.cpp -o helloworld

The -o is the output option. You're telling g++ to send the output (the executable) to the
file helloworld.

At this point | have

[student@localhost test] 1ls -la

total 62

drwxrwxrwx. 1 root root O Sep 17 17:08 .

drwxrwxrwx. 1 root root 16384 Sep 17 17:08 ..

-IWXrwxrwx. 1 root root 22640 Sep 17 17:08 a.out
-IwXrwxrwx. 1 root root 22640 Sep 17 17:08 helloworld
-IwXrwxrwx. 1 root root 94 Sep 17 17:08 helloworld.cpp

And of course you run helloworld by doing this:

[student@localhost test] ./helloworld
hello world

If you're also using a GUI, the GUI might display a special icon to tell you that a certain
file is an executable. GUIs usually determine the nature of a file by the file extension. For
an executable, the default extension is .exe. So you might want to name your executable
helloworld.exe instead:

[student@localhost test] g++ helloworld.cpp -o helloworld.exe

Exercise 3.1. If your source file is predictstockprice.cpp and the executable you want
to build is secret, what is the command to execute in the shell? What do you type at the
shell to run secret? O

Exercise 3.2. For practice, take any C/C++ book and do 10 programs, building the exe-
cutable using g++. O

DR. YIHSIANG LIOW yiioweccis.edu 6 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

3.1 Note for C programmers

For a C program, everything above is the same except that you can use gcc instead of
g++. Note that since C is a subset of C++, you can also compile C programs using g++.

Exercise 3.3. Compile the following C program helloworld.c:

#include <stdio.h>

int main()

{
printf("hello world\n");
return O;

¥

into an executable. Run it. Depending your compiler, the first line of the program might
be

#include <cstdio>

or
#include "stdio.h"

instead. O
Exercise 3.4. Can you compile a C++ program using gcc? O
Exercise 3.5. Can you compile a C program using g++? O

3.2 Note to Cygwin users

Executing “g++ helloworld.cpp” will produce a.exe and not a.out. To run a.exe you can
either execute “./a” or “. /a.exe”.

DR. YIHSIANG LIOW yiioweccis.edu 7 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

4 The Warn all Option

There’s a difference between a warning and an error. An error reported by g++ means
the program is not compiled. A warning is a warning to you that maybe you want to look
at your code, but g++ can still compile the program.

Change your helloworld.cpp to the following:

#include <iostream>

int main()

{
int x;
std::cout << "hello world" << std::endl;
return O;

}

When you compile

[student@localhost test] g++ helloworld.cpp

gpp has no quarrels with you. Now try this:

[student@localhost test] g++ -Wall helloworld.cpp

You'll get this message from g++:

main.cpp: In function ‘int main()’:
main.cpp:5:9: warning: unused variable ‘x’ [-Wunused-variable]
5 | int x;

But if you check, you’ll see that g++ has given you your a.out.

In the above, the wall is called the “warn all” option. This will make g++ print all warnings.
Obviously this is a good idea. You are strongly advised to turn on the warn all option.
Sometimes a compiler can fix some problems for you. Sometimes a compiler relaxes the
actual requirement for the language. But this can be dangerous. The compiler can make
wrong decisions. The best is to get the compiler to reveal to you all the warnings during
compilation and you decide how to fix the warnings.

By default g++ might or might not print warnings (depending on the type of warning). Try
the following for yourself:

DR. YIHSIANG LIOW yiioweccis.edu 8 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

#include <iostream>

int main()

{
int x;
std::cout << x << '\n'; // using x without giving x a value
return O;

X

#include <iostream>

int main()

{
std::cout << "hello world" << std::endl;
// No int value returned

#include <iostream>

int £()
{} // No int value returned

int main()

{
std::cout << "hello world" << std::endl;
return O;

#include <iostream>

int £
{
int x = 0;
if (x == 0)
{
return 42;
}

// No int return value here

int main()

{

std::cout << "hello world" << std::endl;

DR. YIHSIANG LIOW yiioweccis.edu 9 OF 28

SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

return O;

Altogether with the output option, you can do this:

[student@localhost test] g++ -Wall helloworld.cpp -o helloworld.exe

Recall from the above that even when you have warnings g++ will still produce an exe-
cutable. Obviously this is dangerous. What you work at a nuclear power plant, compiled
your C++ program, had some warnings, went off to get coffee, came back and forgot
about the warnings, and ran your executable?

One flag that will help is the Werror option. This will convert all warnings to errors, which
means that g++ will treat warnings as errors and therefore if there are warnings, then an
executable will not be produced. (Of course you might previously have an executable in
that directory.)

Another option that you might want to use is Wextra that will provide extra warnings. This
will for instance trigger a warning if you have an unsigned int x and your code compares
“x >= 0", which is curious since all unsigned int values are non-negative anyway.

There’s also the pedantic option that checks if your code is ANSI standard compliant.
This option is probably not necessary for you.

So if you want to include all the above options, you would compile like this:

g++ -Wall -Wextra -Werror -pedantic main.cpp -o main.exe

(Yes personally | do use these options.)

DR. YIHSIANG LIOW yiioweccis.edu 10 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

5 Overview of Compilation Process

Given a C++ program like this

#include <iostream>

int main()

{
std::cout << "hello world" << std::endl;
return O;

}
the process that produces an executable is made up of several steps.

1. Preprocessing: The preprocessor directives, i.e., lines that start with # such as
#include <iostream>

are processed. For #include <iostream>, this line is replaced by the contents of
the file iostream.h.

2. Compilation: The compiler reads each source file and build an object file.
3. Link: All the relevant object files are linked to form to produce an executable file.

(See CISS245 notes.) Of course the above is just a quick overview — the real picture is a
lot more complicated. For instance the compilation step can be broken down into:

2.1. Statements are read and assembly code is produced
2.2. The assembly code is converted to machine code

There are usually some optimization steps as well.

DR. YIHSIANG LIOW yiioweccis.edu 11 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

6 Preprocessing Option

The following is useful when you think something is wrong with the preprocessing step
(#include, etc.) If you compile with the preprocessing option, only the preprocessing

step is executed.

First write two files: t.cpp and s.h. t.cpp will #include the file s.h. Using these two files,

I'll show you the preprocessor in action.

First here is t. cpp:

#include "s.h"

int main()
{

return O;

Here’s the second file s .h:

#ifndef S_H
#define S_H

void f£();

#endif

Now if you run

[student@localhost test] gcc t.cpp -E -o tl.cpp

This will send the preprocessed source to t1.cpp. Let’s take a look at t1. cpp:

[student@localhost test] less tl.cpp

1 "t.cpp"

1 "<built-in>"

1 "<command-line>"

1 "/usr/include/stdc-predef.h" 1 3 4
1 "<command-line>" 2

1 "t.cpp"

1 "s.h" 1

void £();

2 "t.cpp" 2

H OHF H OH HF H H

DR. YIHSIANG LIOW yiioweccis.edu 12 OF 28

SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

int main()
{
return O;

3

Ignoring the lines beginning with the preprocessor directive symbol #, the source file
t1.cpp looks like this:

void £();

int main()
{

return O;

}

(If you don’t specify the output option, the preprocessed source is sent to the standard
output, your console window.)

Get rid of t.cpp, t1.cpp, and s.h before going to the next section

Exercise 6.1. Produce a preprocessed source file from helloworld.cpp. Take a look at
it! (You’ll see why | did not use it as an example.) O

DR. YIHSIANG LIOW yiioweccis.edu 13 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

7 The Debugger Option

The GNU debugger, gdb, allows you to debug programs by for instance executing one
statement at a time so that you can view the state of your program. Refer to the gdb
tutorial for details.

In order for gdb to work, you need to compile your code with extra information. And to do
that you need to include a special option. This is how you do it:

For a C++ program you do this

[student@localhost test] g++ -g helloworld.cpp -o helloworld

If you include the warn-all option, you get

[student@localhost test] g++ -Wall -g helloworld.cpp -o helloworld

For a C program you do this:

gcc -Wall -g helloworld.c -o helloworld

After the executable helloworld is created, you can run gdb on it:

gdb helloworld

Once you are confident that your program works correctly you should recompile without
the -g option. Again refer to the gdb tutorial for details.

Besides gdb, there are other debugger tools that also requires or recommend the -g flag.

DR. YIHSIANG LIOW yiioweccis.edu 14 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

8 Object Files and Linking

Instead of generating the executable, let’s generate the object files and then link them
together. Before that let’s get rid of the executables from previous sections:

[student@localhost test] rm a.out helloworld *.exe

Now do this

[student@localhost test] g++ -c helloworld.cpp

The -c option tells g++ to compile object files and do not link. Do a list directory and you
see that you have a new file:

[student@localhost test] 1ls -la

total 24

drwxrwxrwx. 1 root root 4096 Sep 17 17:08 .

drwxrwxrwx. 1 root root 16384 Sep 17 17:08 ..
1 root root 105 Sep 17 17:08 helloworld.cpp
1 root root 2712 Sep 17 17:08 helloworld.o

“YWXIWXIrwXx.
“IWXITWXIWX.

The helloworld.o is the object file produced from helloworld. cpp. If you want to change
the name of the object file you can so this:

[student@localhost test] g++ -c helloworld.cpp -o someobjectfile.o
[student@localhost test] 1ls -la

total 27

drwxrwxrwx. 1 root root 4096 Sep 17 17:08 .

drwxrwxrwx. 1 root root 16384 Sep 17 17:08 ..

-rwxrwxrwx. 1 root root 105 Sep 17 17:08 helloworld.cpp
-rwxrwxrwx. 1 root root 2712 Sep 17 17:08 helloworld.o
-rwxrwxrwx. 1 root root 2712 Sep 17 17:08 someobjectfile.o

Usually you don’t want to change the default name of the object file. Let’'s get rid of the
second object file:

[student@localhost test] rm s*.o

And now to produce an executable from the object file (not the cpp file) do this:

[student@localhost test] g++ helloworld.o -o helloworld.exe

DR. YIHSIANG LIOW yiioweccis.edu 15 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

Do a list directory to verify that you now have an executable:

[student@localhost test] 1ls -la

total 46

drwXrwxrwx.
drwXrwxrwx.
“TWXTWXTWX.
~“TWXTWXTWX.
“TWXTWXTWX.

=

root
root
root
root
root

root
root
root
root
root

4096 Sep 17
16384 Sep 17

105 Sep 17
22640 Sep 17
2712 Sep 17

17:08 .

17:08 ..

17:08 helloworld.cpp
17:08 helloworld.exe
17:08 helloworld.o

Run helloworld.exe on your own to verify that you do have a valid executable.

DR. YIHSIANG LIOW yiioweccis.edu

16 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

9 Compiling multiple files

So far I've shown you the following: Given a single cpp file,

1. Build the executable
2. Build the object file and then the executable

Now let me talk about the case where you have multiple files, including header files as
well. The process is very similar — so no big surprises.

Create the following files. Here’s the helloworld1l. cpp:

#include "print.h"

int main()
{
print();
return O;

Here’s print . h:

Here’s the print. cpp:

#include <iostream>
#include "print.h"

void print()
{

std::cout << "hello world" << std::endl;

I’'m going to build the executable helloworldl.exe from helloworldl.cpp. | can do this
by building the executable immediately:

[student@localhost test] g++ helloworldl.cpp print.cpp -o helloworldl.exe
helloworldl.cpp:1:10: fatal error: print.h: No such file or directory
1 | #include "print.h"
| Ameeeeeen
compilation terminated.
print.cpp:2:10: fatal error: print.h: No such file or directory
2 | #include "print.h"
s

compilation terminated.

DR. YIHSIANG LIOW yiioweccis.edu 17 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

It does work and for a small project this is probably best. In general if your project involves
a.cpp, b.cpp, c.cpp, d.cpp, you can build the executable e. exe like this:

Of course if these are the only cpp files in the current directory you can also do this:

g+t+ *.cpp -0 e.exe

where * . cpp means “all the files here that ends with . cpp”.

But now I'm going to build the executable in two steps:

1. Build the object files
2. Link object files to get an executable.

You do have to type more commands. In the next section I'll explain why it’s important to
do it this way.

First, build the object files:

[student@localhost test] g++ -c helloworldl.cpp print.cpp
helloworldl.cpp:1:10: fatal error: print.h: No such file or directory
1 | #include "print.h"
| Ammmeeees
compilation terminated.
print.cpp:2:10: fatal error: print.h: No such file or directory
2 | #include "print.h"
e

compilation terminated.

Do a list directory to check that we do have two new object files:

[student@localhost test] 1ls -la *.o
-IwXrwxrwx. 1 root root 2712 Sep 17 17:08 helloworld.o

Of course the above is similar to executing g++ twice with the -c option:

g++ -c helloworldl.cpp
g++ -c print.cpp

Second, let’s link everything to get an executable:

[student@localhost test] g++ helloworldl.o print.o -o helloworldl.exe
g++: error: helloworldl.o: No such file or directory

g++: error: print.o: No such file or directory

g++: fatal error: no input files

DR. YIHSIANG LIOW yiioweccis.edu 18 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

’compilation terminated. ‘

and véila:

[student@localhost test] 1ls -la h*l.exe
ls: cannot access 'hxl.exe': No such file or directory

Run your executable helloworld1l.exe to verify that it works.

Instead of the above command

g++ helloworldl.o print.o -o helloworldl.exe

you can do this:

gt++ -o helloworldl.exe helloworldl.o print.o

They mean the same thing.

So let me summarize. If you have a project involving multiple C++ files, say a.cpp, b. cpp,
c.cpp, d.cpp, You can build the object files like this:

g++ —c a.cpp b.cpp c.cpp d.cpp

or one at a time like this:

g++ —-c a.cpp

g++ —c b.cpp
c.

gt+ —c c.cpp
g+t+ —-c d.cpp

This will produce object files a.o, b.o, c.0, d.o. You then link them together

g+t a.0 b.o c.o d.o -0 e.exe

or this:

g+t+ -0 e.exe a.o b.o c.o d.o

to get the executable e.exe. That’s it! (for now ...) The process is the same if you have C
program files except that you use gcc instead of g++.

Putting everything together to include the warn all and debug option (assuming you're still
working/debugging the project), this is how you should use g++. Assume again that your
project involves a.cpp, b.cpp, c.cpp, d.cpp. First, you generate the object files:

g+t+ -Wall -g -c a.cpp b.cpp c.cpp d.cpp

and second, then you link them:

g+t+ a.o b.o c.o d.o -0 e.exe

DR. YIHSIANG LIOW yiioweccis.edu 19 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

to get the executable e.exe. If the files are C source files you use gcc instead of g++.

DR. YIHSIANG LIOW yiioweccis.edu 20 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

10 Why Build and Save Object Files?

If you execute

g++ helloworldl.cpp print.cpp -o helloworldl.exe

the compiler will build the intermediate object files (although they won’t be saved so you
won’t see them in your project directory) and then link them together to get the executable
helloworldl.exe. The object files are not saved.

So why is it important to manually build the object files on your own so as to have the
object files saved in your project directory?

Because in real world programs, a C++ source file might be huge and it can take a long
time to generate the object file. Further, a complete C++ project might involve a huge
number of C++ source files. Suppose you have a C++ project in a directory and the
project involves 1000 C++ cpp files, including the main C++ source file, say game.cpp
which containing the main() function; say all the relevant header files are also in the
same directory. game. cpp uses the other 999 C++ files directly or indirectly.

Now suppose you modified two files. Obviously you want to rebuild your executable and
test your program. So you execute

gt++ *.cpp -0 game.exe

g++ would recompile all the 1000 C++ files to obtain 1000 new object files and then link
them together (your object files are not saved.)

However if you built object files separately so that the object files were kept in your project
folder, then you only need to rebuild the object files for the modified files or those that
uses the modified files directly. If the modified C++ files are

e physics.h and physics.cpp

e sound.h and sound.cpp
then you can do the following:

gt++ —-c physics.cpp
g++ —-c sound.cpp
g++ —C game.cpp
g++ *.0 -0 game

assuming game . cpp is the only cpp file that uses physics.h or sound.h. This dramatically
saves you a lot of time when compared to building 1000 object files. The linking process
would still take the same amount of time.

In general, you have to rebuild object file x. o if

DR. YIHSIANG LIOW yiioweccis.edu 21 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

1. you modified x. cpp or
2. x.cpp contains #include "y.h" and you modified y.h

Although you need to know all the benefits of saving object files, remember that the type
of projects you will work on right now will be small (unless you are working on some
humongous personal project). So you won't really see the benefit in a dramatic way. But
even if you’re working on a small project, but the project uses the source files of some
really huge project, then it will have an impact. In the real world, recompiling a whole C++
project can take hours.

DR. YIHSIANG LIOW yiioweccis.edu 22 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

11 Include Directory

It's possible to tell g++ to look for header files other than in the directory containing your
main program. This is helpful for instance if you're reusing code from another project.

Suppose your current directory has helloworldl.cpp (as before):

#include "print.h"

int main()
{
print();
return O;

3

Let say print.h is somewhere else: create a directory inside your current directory, say
include, and move print.h into that directory:

[student@localhost test] mkdir include
[student@localhost test] mv print.h include

mv: cannot stat 'print.h': No such file or directory

Now if you try to compile your program, g++ will complain:

[student@localhost test] g++ helloworldl.cpp -c
helloworldl.cpp:1:10: fatal error: print.h: No such file or directory
1 | #include "print.h"
| ammmeeeas

compilation terminated.

Why? Because for your header files, g++ will only look at your current directory. (g++ will
look for standard header files such as iostream.h at special system level directories —
you don’t have to worry about such header files.)

Now try this:

[student@localhost test] g++ helloworldl.cpp -c -I include
helloworldl.cpp:1:10: fatal error: print.h: No such file or directory
1 | #include "print.h"
| ~~~~~~~~~

compilation terminated.

It works! Why? Because the -I option tells g++ to look for header files in the include

DR. YIHSIANG LIOW yiioweccis.edu 23 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

directory. Of course if your header files are in directory /a/b/c/d, then you execute

g++ helloworldl.cpp -c¢ -I /a/b/c/d

Exercise 11.1. What if you want g++ to look in two different directories for header files?
U

By the way, what if you need to link with an object file that sits in a different directory? Say
| move print.o to a new directory obj:

[student@localhost test] mkdir obj
[student@localhost test] mv print.o obj
mv: cannot stat 'print.o': No such file or directory

Then | just specify the path to the object file:

[student@localhost test] g++ helloworldl.o obj/print.o -o helloworld2.exe
gt++: error: helloworldl.o: No such file or directory

g++: error: obj/print.o: No such file or directory

g++: fatal error: no input files

compilation terminated.

DR. YIHSIANG LIOW yiioweccis.edu 24 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

12 Libraries

| started with directly compiling one or more C++ source files directly to an executable,
following by compilinng object files from the course files and then linking them into an
executable. In the previous section, | talked about how to tell the compiling to look for
header files elsewhere — this is when the project gets huge and either you want to put
your files into multiple directories or you want to reuse the code from another project at
another directory.

Besides the header files being stored somewhere, of course the object files can be some-
where else too. As mentioned in the section on header files, you just need to specify the
path to the object files if the object files are not in the current directory.

In the linking process, you combine object files. Beisdes object files there are also “library
files” which are like object files. For instance you have been using the functions defined
in the header iostream.h. Obviously your executable must somehow be build by linking
with the library code associated with iostream.h. The library is called 1ibstdc++.s0. In
the case of 1ibstdc++, you do not need to tell g++ to use it — it’s automatic.

For non-standard llibraries, you have to tell g++ to link to the libraries. For instance

g++ main.cpp -1SDL -lpthread

In this case, I'm telling g++ to link with the 1ibSDL.so and libpthread.so library.
Note that if you want to use 1ibSDL, in the -1 option you write SDL and not 1ibSDL.

Note that the libraries mentioned above are obviously not in your directory. Where are
they? They are usually found in /usr/1ib/. You can also specify a library path using the
-L option.

DR. YIHSIANG LIOW yiioweccis.edu 25 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

13 Optimization

Once you're really certain that your program works correctly you can optimize it. First you
do not want to include the debug option. This will prevent extra debugging information
from being included in your executable. Second you can include the optimization option.
This is how you do it:

Let’s say you have a main.cpp. You also have a class made up of foo.h and foo.cpp.

g++ -02 -c foo.cpp
g++ -02 -c main.cpp
g++ -02 -o main foo.o main.o

If the files are C source files (and they end in .c instead of .cpp) then you can also do
this:

gcc -02 -c foo.c

gcc -02 -c main.c

gcc -02 -o main foo.o main.o

There are actually many optimization levels (-0, -02, and -03). Refer to man pages for
details.

DR. YIHSIANG LIOW yiioweccis.edu 26 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

14 Summary

Your basic g++ command should probably be

g++ *.cpp —g -Wall

This should be sufficient for most assignments.

DR. YIHSIANG LIOW yiioweccis.edu 27 OF 28 SEPTEMBER 17, 2022

GCC/G++ TUTORIAL

15 What now?

g++ is an extremely complicated piece of software. Remember that you can find lots of
information just by using the man pages:

man g++

The number of options can be overwhelming. Another route to learning more about g++
is of course to use the web and search for g++ tutorials.

You now know how to go from C++ source file(s) to executable (and how to run executa-
bles) and from source files to object file to executable. The next thing to learn is how to
manage your collection of object files. Recall that in the section on object files, you only
need to rebuild an object file if the corresponding C++ source file is modified or if the C++
source file uses a modified header file. It turns out that you don’t have to worry about
remembering which files were changed or which object files need to be recompiled. Linux
has tools to manage that for you. There are many such software in Linux to handle this
aspect of project. The simplest and most popular is called make. Once you’ve specified
the “relationship” between files in your project, when you run make, it will decide which
object file has to be rebuilt.

DR. YIHSIANG LIOW yiioweccis.edu 28 OF 28 SEPTEMBER 17, 2022

	Introduction
	Prerequisites
	Compiling a Single C/C++ Source File into an Executable
	Note for C programmers
	Note to Cygwin users

	The Warn all Option
	Overview of Compilation Process
	Preprocessing Option
	The Debugger Option
	Object Files and Linking
	Compiling multiple files
	Why Build and Save Object Files?
	Include Directory
	Libraries
	Optimization
	Summary
	What now?

