Make Tutornial

DR. YIHSIANG LIOW

Contents

9

What is make?

Compiling a C Program Using make
Executing More Than one Command
Recompiling a C Program

Makefile with Two Targets

Building Object Files

Personal Header File Dependency
Cleaning up

Macros/Variables

10 Miscellaneous

11 Summary

12 Sample makefiles

13 FAQ

(FEBRUARY 4, 2024)

10
12
13
14
15
16

17

MAKE TUTORIAL

1 What is make?

In software development, make is a utility for automatically building executable programs
and libraries from source code. Files called makefiles specify how to derive the target pro-
gram from each of its dependencies. Make can decide where to start through topological
sorting. Though Integrated Development Environments and language-specific compiler
features can also be used to manage the build process in modern systems, make remains
widely used, especially in Unix-based platforms.

- from wikipedia.org

For this tutorial, we will introduce the make utility for compiling C/C++ programs. Therefore
you should first read the tutorial on gcc/g++. You can use the make utility for program
compilation activity for any programming language. For the examples in this tutorial, | will
compile using the simplest options. For real work you might have to use options such as
-Wall and -g.

You may use either UNIX or Linux or Cygwin. You must have gcc/g++ and make. (Typing
gcc and make at your shell prompt will tell you if you have gcc and make.) For this tutorial,
| will be using Linux. Executables will be generated. You should create a temporary
directory for these experiments. | will assume throughout that the working directory is this
temporary directory. We’ll be writing some C/C++ source files and some header files. Let
me remind your that header files should end with (at least) one blank line or you might get
some confusing error(s).

[Cygwin users: Remember that if you're using Cygwin, executables produced will end with
exe by default. You will have to modify what follows on your own.]

DR. YIHSIANG LIOW yiioweccis.edu 2 OF 18 FEBRUARY 4, 2024

MAKE TUTORIAL

2 Compiling a C Program Using make

The contents of a makefile looks something like a series of

[target] : [dependencies]
[command]

WARNING: Each [command] must begin on a new line and is preceded by a tab!!! (In
other words, in the above, the 8 spaces before the [command] is actually a tab. If you're
using emacs/xemacs, to force a tab character, do C-Q before you press the tab key.)

First create a C program and call it hw.c:

#include <stdio.h>

int main()

{
printf("hello world\n");
return O;

Next create a file called makefile with the following content:

This is my first makefile
hw.exe: hw.c
gcc hw.c -o hw.exe

Now type make at your shell prompt. Read the output. Do an 1s -1a. What do you think
happened?

Exercise 2.1. Write a helloworld C++ program (using std: : cout for printing of course)
and call the source file hw. cpp. Modify the makefile to execute g++ instead of gcc. Exe-
cute make. O

DR. YIHSIANG LIOW yiioweccis.edu 30F 18 FEBRUARY 4, 2024

MAKE TUTORIAL

3 Executing More Than one Command

By the way, you can have more than one command for each target:

[target] : [dependencies]
[command-1]
[command-2]

Let’s try that out. First clean up by doing rm hw. Next modify your makefile:

This is my first makefile
hw.exe: hw.c
gcc hw.c -o hw.exe
1s -la

Type make again.

Exercise 3.1. Redo the above exercise for C++ (instead of C). O
Now revert the makefile to what it was (i.e. remove the 1s -1a).
Exercise 3.2. Modify the makefile so that after building the executable, you run the ex-

ecutable. After you're done with this experiment, revert your makefile to the original
version. O

DR. YIHSIANG LIOW y1ioweccis.edu 4 0OF 18 FEBRUARY 4, 2024

MAKE TUTORIAL

4 Recompiling a C Program

For this section, the first thing | want you to do is to remove the compiled executable by
doing rm hw.exe.

Next, execute make. Do an 1s -1a and look at the timestamp of your executable hw. exe.

Wait a minute and then type make. Read the output. Look at the timestamp of your
executable hw.exe again. Let’s have some intelligent interpretation ...

Next let’'s say we modify our program:

#include <stdio.h>

int main()

{
printf("hello world ... O\n");
return O;

Save the program. Now type make again. Do 1s -1la and look at the timestamp of your
executable hw.exe.

Punchline: Whether make will execute a command or not depends on the timestamp of
the target, hw.exe, i.e., output file of the command of the target, and the file(s) from the
dependency (or dependencies), i.e., hw.c. So using the above example, if hw.c was
modified after the program hw.exe was generated, make will execute the command to
recompile the program. However, if hw.c was not modified after hw.exe was built, then
make Will not rebuild hw.exe. And what if the target hw.exe is not found? Of course the
command for that target is executed.

Now clean up by doing rm hw.exe.

Exercise 4.1. Do the same experiment as above with the following makefile:

This is my first makefile
hw.exe:
gcc hw.c -o hw.exe

(See the difference?) Remove hw.exe and run make. Now make some minor modification
to hw.c and run hw. exe again. Get it? When you'’re done with this experiment, revert your
makefile to the original. U

Exercise 4.2. Do the same experiment as above with the following makefile:

DR. YIHSIANG LIOW yiioweccis.edu 50F 18 FEBRUARY 4, 2024

MAKE TUTORIAL

This is my first makefile
abc:

gcc hw.c -o hw.exe

(See the difference?) Remove hw.exe and run make. Here’s the question: What will
happen with you execute make a second time? Now test your conjecture by running make.
Get it? When you're done, revert your makefile to the original. O

DR. YIHSIANG LIOW yiioweccis.edu 6 OF 18 FEBRUARY 4, 2024

MAKE TUTORIAL

5 Makefile with Two Targets

Now create another C program, say hwi.c.

#include <stdio.h>

int main()

{
printf("hello world ... 1\n");

return 0;

Modify your makefile:

This is my first makefile
hw.exe: hw.c
gcc hw.c -o hw.exe

hwl.exe: hwl.c
gcc hwl.c -o hwl.exe

First execute make hwi.exe. What happened?

This shows you that you can specify the target when you execute make. Clean up: do

rm hwl.exe.

Now do make. What happened? This shows you that if you do not specify the target, the
first target of the makefile is used. Clean up: do rm hw and rm hwi; revert your makefile

to what it was:

This is my first makefile
hw.exe: hw.c
gcc hw.c -o hw.exe

DR. YIHSIANG LIOW yiioweccis.edu 7 OF 18

FEBRUARY 4, 2024

MAKE TUTORIAL

6 Building Object Files

Now add this printhw.h:

#ifndef PRINTHW_H
#define PRINTHW_H

void printhw(int);

#endif

(remember to include that blank line at the end!) and printhw.c:

#include <stdio.h>
#include "printhw.h"

void printhw(int i)
{

printf("hello world ... %d\n", i);
}

(Well, in this case the second #include is actually redundant for this example. But anyway

)
Modify hw. c:

#include "printhw.h"

int main()

{
printhw(0);
return O;

}

Now modify your makefile as follows:

This is my first makefile
hw.exe: printhw.o hw.o
gcc printhw.o hw.o -o hw.exe

printhw.o: printhw.h printhw.c
gcc —c printhw.c

hw.o: printhw.h hw.c
gcc —¢c hw.c

Type make. What happens? Read the output message of make. Do an 1s 1la.

The default target executed is the hw.exe target. However in this case, before the com-
mand for target hw is execute, make will enter the targets from the dependencies, printhw.o

DR. YIHSIANG LIOW yiioweccis.edu 8 OF 18 FEBRUARY 4, 2024

MAKE TUTORIAL

and hw.o and execute their commands. Get it?

Now suppose you make a change in hw. c:

#include "printhw.h"

int main()

{
printhw(0);
printhw(1);
return O;

}

If you run make, how many targets will have their commands executed? (Verify!)

The important point: Recall (example: from CISS240/245) that building an executable is
made up of several steps, not one single step. The last step is combining (linking) object
files into a single executable. Of course the step before that is to build some object files.
Object files can be created from C/C++ file. If you have 1000 C/C++ files and you only
modify one of them, then you really only need to build the object file for that modified file
and then link the 999 object files with this new object file to create the executable. This will
save you a lot of time. This is particularly the case if your executable involves many C++
classes or C structures and you build many intermediate object files and keep track of
what needs to be rebuilt using a makefile. (There are other ways to build an executable.)

Exercise 6.1. What will happen if you have this makefile instead

This is my first makefile
printhw.o:printhw.h printhw.c
gcc —c printhw.c

hw.o: printhw.h hw.c
gcc —¢c hw.c

hw.exe: printhw.o hw.o
gcc printhw.o hw.o -o hw.exe

and you execute make.

WARNING: It's extremely important to get the dependencies correct! If written incorrectly,
you could end up with a makefile that does not recompile a particular file even though
it's been modified!

DR. YIHSIANG LIOW yiioweccis.edu 9 OF 18 FEBRUARY 4, 2024

MAKE TUTORIAL

7 Personal Header File Dependency

If your source code uses header files which does not change, then you do not have to
include the header files. For instance you do not need to have iostream.h in the list of
dependencies since iostream.h won’t change (you don’t intend to change it, right? | hope
not.)

But what if you're writing your own header files? Again if these header files are not
changed, then they do not have to be included. But what if you're still working on them?

In general, if x. cpp has the following includes

#include "a.h"
#include "b.h"
#include "c.h"

where a.h, b.h, c.h are your own header files and they might change and they are in
the same directory where you have the makefile, then the section in your makefile for
building x .o should look like this:

X.0: a.h b.h c.h x.c
gcc -c x.cC

Of course if you're done working on c.h, then you can leave it out:

X.0: a.h b.h x.c
gcc -c Xx.cC

But there’s no harm in including c.h anyway.
Here’s an example. Write the following files:

Now when we execute make and when we execute main. exe we get:
a() ... 1

Now modify a.h like this:

#ifndef A_H
#tdefine A_H
#include <iostream>

void a()

{
std::cout << "a() ... 2" << std::endl;

3

#endif

When you execute make, you will see the main.exe is not rebuilt: make will tell you that

DR. YIHSIANG LIOW yiioweccis.edu 10 OF 18 FEBRUARY 4, 2024

MAKE TUTORIAL

main.exe iS up to date.

However if your makefile is changed to this:

main.exe: main.cpp a.h
g++ main.cpp —o main.exe

you will see that on executing make, you will get a new main.exe. You can change your
a.h to this:
#ifndef A_H

#tdefine A_H
#include <iostream>

void a()

{
std::cout << "a() ... 3" << std::endl;

3

#endif

and again, make will rebuild your main.exe.

In the above example, the header file is in the same directory as the makefile. The case
where the header file is somewhere else, i.e., in a different directory, can also be easily
handled. Create a subdirectory include/ and move a.h into include/. Change your
makefile:

File: makefile
main.exe: main.cpp include/a.h
g++ main.cpp -o main.exe -I include/

Test your makefile including modification to include/a.h.

That’s it.

DR. YIHSIANG LIOW y1ioweccis.edu 11 OF 18 FEBRUARY 4, 2024

MAKE TUTORIAL

8 Cleaning up

Sometimes you want to get rid of the output files of make. In the case of our C/C++ pro-
grams, that would be the object files and perhaps the executable. Here’s the standard
way of doing it using the makefile:

This is my first makefile
hw.exe: printhw.o hw.o
gcc printhw.o hw.o -o hw.exe

printhw.o: printhw.h printhw.c
gcc —c printhw.c

hw.o: printhw.h hw.c
gcc —c hw.c

clean:
rm -f printhw.o hw.o hw.exe

Type make clean at the shell prompt. Read the output. Do an 1s -1a to see what files
are removed.

Exercise 8.1. Take any 10 problems from your CISS240 class (or any 5 problems from
your C++ textbook) and write the programs and one makefile for each program. You want
to have each program be in a separate folder. O

DR. YIHSIANG LIOW yiioweccis.edu 12 0F 18 FEBRUARY 4, 2024

MAKE TUTORIAL

9 Macros/Variables

Some of the terms used in the makefile occurs several times. It's a common practice to
create macros for them. It makes the makefile easier to read and maintain.

This is my first makefile

CC = gcc # C compiler

CCFLAGS = -g # compiler options: debugging flag on
LINK = gcc # Linker

LINKFLAGS = # Linker options

0BJS = hw.o printhw.o # Object files

EXE = hw.exe # Executable file

$(EXE): $(0BJS)
$(LINK) $(LINKFLAGS) $(0BJS) -o $(EXE)

printhw.o: printhw.h printhw.c
$(CcC) $(CCFLAGS) -c printhw.c

hw.o: printhw.h hw.c
$(CC) $(CCFLAGS) -c hw.c

clean:
rm -f $(0BJS) $(EXE)

CC, CCFLAGS, LINKFLAGS, 0BJS and EXE are macros. For instance CC is a macro for gcc.
When you run make and it sees $(CC), it will replace $(CC) with gcc.

If you need to use a different C compiler all you need to do is to change the macros. The
macros are pretty standard. Don’t comment them! Or someone will think you're a clueless
noob. I'm putting them there just to help you read the makefile. There are however some
minor variations in the names of these macros. For instance instead of CCFLAGS you might
see CCOPTS. Another thing is that the LINK macro has the same value as the CC macro.
So usually there is no LINK macro. When you read some makefiles, you will see LD or
LINKER instead of LINK.

Exercise 9.1. Write a C++ project. Choose one that has several cpp files. Use a
makefile. The usual name for the C++ macro is CXX. Your compiler and linker value
should be g++. O

DR. YIHSIANG LIOW yiioweccis.edu 130F 18 FEBRUARY 4, 2024

MAKE TUTORIAL

10 Miscellaneous

There are many other features in make that | won’t go into. You will find lots of additional
information on make on the web. I'll leave you with three final things ...

| also include a macro to run the executable and a macro c for clean.

main.exe: main.cpp
g++ *.cpp -0 main.exe

clean:

rm -f main.exe

rm -f main.exe

run:

./main.exe

./main.exe

If a line (dependency or command) is too long, you can break the line in the middle with
a backslash \ like this: For instance:

clean:

rm firstobjectfile, secondobjectfile, thirdobjectfile, \
fourthobjectfile

It's probably neater to indent:

clean:

rm firstobjectfile, secondobjectfile, thirdobjectfile, \
fourthobjectfile

There’s a built-in macro that refers to the target. For instance suppose this is a piece of
your makefile:

hw.o: hw.cpp
g++ hw.cpp -c -o hw.o

then you can do this instead:

hw.o: hw.cpp
g++ hw.cpp -c -o $@

DR. YIHSIANG LIOW y1ioweccis.edu 14 OF 18 FEBRUARY 4, 2024

MAKE TUTORIAL

11 Summary

For your makefile for C++ programs, you should probably start with this:

main.exe: *.cpp *.h
g++ *.cpp -o main.exe -Wall -g

clean:
rm -f main.exe

rm -f main.exe

run:
./main.exe

./main.exe

DR. YIHSIANG LIOW yiioweccis.edu 150F 18 FEBRUARY 4, 2024

MAKE TUTORIAL

12 Sample makefiles

Go to https://github.com/yliow/makefiles for some sample makefiles.

DR. YIHSIANG LIOW yiioweccis.edu 16 OF 18 FEBRUARY 4, 2024

https://github.com/yliow/makefiles

MAKE TUTORIAL

13 FAQ

Q: What do | do with this error when | run make after modifying my main. cpp?

make: Warning: File "main.cpp' has modification time 0.032 s in the future

A: There’s a time issue. Just get rid of the executable:

make clean

and do make again.

Q: No matter how much | modify my program, make keeps telling me my executable is up
to date.

A: The file you are modifying is probably is not on the dependencies of your executable
target. Make sure you are modifying a source file that is really used by make that you are
executing. Frequently | find people working on a file in directory x and executing make in
directory y. This happens especially if you have a duplicate copy of your project.

DR. YIHSIANG LIOW yiioweccis.edu 17 OF 18 FEBRUARY 4, 2024

MAKE TUTORIAL

TODO:

1. Object/library file dependency. See python-c-cpp/.

DR. YIHSIANG LIOW yiioweccis.edu 18 OF 18 FEBRUARY 4, 2024

	What is make?
	Compiling a C Program Using make
	Executing More Than one Command
	Recompiling a C Program
	Makefile with Two Targets
	Building Object Files
	Personal Header File Dependency
	Cleaning up
	Macros/Variables
	Miscellaneous
	Summary
	Sample makefiles
	FAQ

